7,751 research outputs found

    Statistical Curse of the Second Half Rank

    Full text link
    In competitions involving many participants running many races the final rank is determined by the score of each participant, obtained by adding its ranks in each individual race. The "Statistical Curse of the Second Half Rank" is the observation that if the score of a participant is even modestly worse than the middle score, then its final rank will be much worse (that is, much further away from the middle rank) than might have been expected. We give an explanation of this effect for the case of a large number of races using the Central Limit Theorem. We present exact quantitative results in this limit and demonstrate that the score probability distribution will be gaussian with scores packing near the center. We also derive the final rank probability distribution for the case of two races and we present some exact formulae verified by numerical simulations for the case of three races. The variant in which the worst result of each boat is dropped from its final score is also analyzed and solved for the case of two races.Comment: 16 pages, 10 figure

    Global fluctuations and Gumbel statistics

    Full text link
    We explain how the statistics of global observables in correlated systems can be related to extreme value problems and to Gumbel statistics. This relationship then naturally leads to the emergence of the generalized Gumbel distribution G_a(x), with a real index a, in the study of global fluctuations. To illustrate these findings, we introduce an exactly solvable nonequilibrium model describing an energy flux on a lattice, with local dissipation, in which the fluctuations of the global energy are precisely described by the generalized Gumbel distribution.Comment: 4 pages, 3 figures; final version with minor change

    Effect of sweep angle on the pressure distributions and effectiveness of the ogee tip in diffusing a line vortex

    Get PDF
    Low-speed wind tunnel tests were conducted to study the influence of sweep angle on the pressure distributions of an ogee-tip configuration with relation to the effectiveness of the ogee tip in diffusing a line vortex. In addition to the pressure data, performance and flow-visualization data were obtained in the wind tunnel tests to evaluate the application of the ogee tip to aircraft configurations. The effect of sweep angle on the performance characteristics of a conventional-tip model, having equivalent planform area, was also investigated for comparison with the ogee-tip configuration. Results of the investigation generally indicate that sweep angle has little effect on the characteristics of the ogee in diffusing a line vortex

    Coal desulfurization by low temperature chlorinolysis, phase 2

    Get PDF
    An engineering scale reactor system was constructed and operated for the evaluation of five high sulfur bituminous coals obtained from Kentucky, Ohio, and Illinois. Forty-four test runs were conducted under conditions of 100 by 200 mesh coal,solvents - methlychloroform and water, 60 to 130 C, 0 to 60 psig, 45 to 90 minutes, and gaseous chlorine flow rate of up to 24 SCFH. Sulfur removals demonstrated for the five coals were: maximum total sulfur removal of 46 to 89% (4 of 5 coals with methylchloroform) and 0 to 24% with water. In addition, an integrated continuous flow mini-pilot plant was designed and constructed for a nominal coal rate of 2 kilograms/hour which will be operated as part of the follow-on program. Equipment flow sheets and design drawings are included for both the batch and continuous flow mini-pilot plants

    Dispersion processes

    Get PDF
    We study a synchronous dispersion process in which MM particles are initially placed at a distinguished origin vertex of a graph GG. At each time step, at each vertex vv occupied by more than one particle at the beginning of this step, each of these particles moves to a neighbour of vv chosen independently and uniformly at random. The dispersion process ends once the particles have all stopped moving, i.e. at the first step at which each vertex is occupied by at most one particle. For the complete graph KnK_n and star graph SnS_n, we show that for any constant δ>1\delta>1, with high probability, if Mn/2(1δ)M \le n/2(1-\delta), then the process finishes in O(logn)O(\log n) steps, whereas if Mn/2(1+δ)M \ge n/2(1+\delta), then the process needs eΩ(n)e^{\Omega(n)} steps to complete (if ever). We also show that an analogous lazy variant of the process exhibits the same behaviour but for higher thresholds, allowing faster dispersion of more particles. For paths, trees, grids, hypercubes and Cayley graphs of large enough sizes (in terms of MM) we give bounds on the time to finish and the maximum distance traveled from the origin as a function of the number of particles MM

    Using Classical Probability To Guarantee Properties of Infinite Quantum Sequences

    Full text link
    We consider the product of infinitely many copies of a spin-121\over 2 system. We construct projection operators on the corresponding nonseparable Hilbert space which measure whether the outcome of an infinite sequence of σx\sigma^x measurements has any specified property. In many cases, product states are eigenstates of the projections, and therefore the result of measuring the property is determined. Thus we obtain a nonprobabilistic quantum analogue to the law of large numbers, the randomness property, and all other familiar almost-sure theorems of classical probability.Comment: 7 pages in LaTe

    Probability distribution of residence times of grains in models of ricepiles

    Get PDF
    We study the probability distribution of residence time of a grain at a site, and its total residence time inside a pile, in different ricepile models. The tails of these distributions are dominated by the grains that get deeply buried in the pile. We show that, for a pile of size LL, the probabilities that the residence time at a site or the total residence time is greater than tt, both decay as 1/t(lnt)x1/t(\ln t)^x for Lωtexp(Lγ)L^{\omega} \ll t \ll \exp(L^{\gamma}) where γ\gamma is an exponent 1 \ge 1, and values of xx and ω\omega in the two cases are different. In the Oslo ricepile model we find that the probability that the residence time TiT_i at a site ii being greater than or equal to tt, is a non-monotonic function of LL for a fixed tt and does not obey simple scaling. For model in dd dimensions, we show that the probability of minimum slope configuration in the steady state, for large LL, varies as exp(κLd+2)\exp(-\kappa L^{d+2}) where κ\kappa is a constant, and hence γ=d+2 \gamma = d+2.Comment: 13 pages, 23 figures, Submitted to Phys. Rev.

    Persistent correlation of constrained colloidal motion

    Full text link
    We have investigated the motion of a single optically trapped colloidal particle close to a limiting wall at time scales where the inertia of the surrounding fluid plays a significant role. The velocity autocorrelation function exhibits a complex interplay due to the momentum relaxation of the particle, the vortex diffusion in the fluid, the obstruction of flow close to the interface, and the harmonic restoring forces due to the optical trap. We show that already a weak trapping force has a significant impact on the velocity autocorrelation function C(t)= at times where the hydrodynamic memory leads to an algebraic decay. The long-time behavior for the motion parallel and perpendicular to the wall is derived analytically and compared to numerical results. Then, we discuss the power spectral densities of the displacement and provide simple interpolation formulas. The theoretical predictions are finally compared to recent experimental observations.Comment: 12 pages, 6 figure

    Equilibrium of anchored interfaces with quenched disordered growth

    Full text link
    The roughening behavior of a one-dimensional interface fluctuating under quenched disorder growth is examined while keeping an anchored boundary. The latter introduces detailed balance conditions which allows for a thorough analysis of equilibrium aspects at both macroscopic and microscopic scales. It is found that the interface roughens linearly with the substrate size only in the vicinity of special disorder realizations. Otherwise, it remains stiff and tilted.Comment: 6 pages, 3 postscript figure
    corecore